(22) Date of filing of Application :26/07/2023

## (43) Publication Date : 01/09/2023

## (54) Title of the invention : DETECTION OF CHRONIC HEART FAILURE FROM HEART SOUNDS USING MACHINE LEARNING AND DEEP LEARNING

| <ul> <li>(51) International classification</li> <li>(86) International Application No<br/>Filing Date</li> <li>(87) International Publication No</li> <li>(61) Patent of Addition to<br/>Application Number<br/>Filing Date</li> <li>(62) Divisional to Application<br/>Number<br/>Filing Date</li> </ul> | :A61B0007040000, G06N0003080000, A61K0045060000,<br>A61N0001362000, G16B0025000000<br>:PCT///<br>01/01/1900<br>: NA<br>:NA<br>:NA<br>:NA<br>:NA | <ul> <li>(71)Name of Applicant :</li> <li>1)St. Martin's Engineering College<br/>Address of Applicant : St. Martin's Engineering College, Dhulapally Kompally Secundrabad</li></ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## (57) Abstract :

Chronic heart failure (CHF) affects over 26 million of people worldwide, and its incidence is increasing by 2% annually. Despite the significant burden that CHF poses and despite the ubiquity of sensors in our lives, methods for automatically detecting CHF are surprisingly scarce, even in the research community. We present a method for CHF detection based on heart sounds. The method combines classic Machine-Learning (ML) and end-to-end Deep Learning (DL). The classic ML learns from expert features, and the DL learns from a spectro-temporal representation of the signal. The method was evaluated on recordings from 947 subjects from six publicly available datasets and one CHF dataset that was collected for this study. Using the same evaluation method as a recent PhysoNet challenge, the proposed method achieved a score of 89.3, which is 9.1 higher than the challenge's baseline method. The method's aggregated accuracy is 92.9% (error of 7.1%); while the experimental results are not directly comparable, this error rate is relatively close to the percentage of recordings labeled as "unknown" by experts (9.7%). Finally, we identified 15 expert features that are useful for building ML models to differentiate between CHF phases (i.e., in the decompensated phase during hospitalization and in the recompensated phase) with an accuracy of 93.2%. The proposed method shows promising results both for the distinction of recordings between healthy subjects and patients and for the detection of different CHF phases. This may lead to the easier identification of new CHF patients and the development of home-based CHF monitors for avoiding hospitalizations.

No. of Pages : 15 No. of Claims : 5